Fun Geometry Problem with Solution #135
⨷Âì



¨§¾ÔÊÙ¨¹ìÇèÒ x = 20°
¾ÔÊÙ¨¹ì



(1) ∠ACD = 90° - x, ∠ADC = 10° + x áÅР∠BDC = 170° - x

(2) ¡Ó˹´¨Ø´ P à»ç¹ÀÒ¾Êзé͹¢Í§¨Ø´ C ¼èÒ¹ AD      ∆ADP  ∆ACD      AP = AC, DP = CD, ∠DAP = ∠CAD = 80° áÅÐ ∠ADP = ∠ADC = 10° + x
∵ AC = AP      ∆ACP à»ç¹ ∆˹éÒ¨ÑèÇ ·ÕèÁÕ ∠A (= 160°) à»ç¹ÁØÁÂÍ´      ∠ACP = ∠APC = 10°

(3) ¡Ó˹´¨Ø´ Q ·Ò§´éÒ¹¢ÇҢͧ AC ·Õè·ÓãËé ∠ACQ = 170° - x ( ∠DCQ = 80°) áÅÐ CQ = CD
¨ÐàËç¹ÇèÒ ∆ACQ  ∆BCD ´éǤÇÒÁÊÑÁ¾Ñ¹¸ìẺ ´-Á-´ (AC = BD, ∠ACQ = ∠BDC, CQ = CD)      ∠AQC = ∠BCD      ∠AQC = 10°      ∠AQC = ∠APC      ☐ACQP ÊÒÁÒöṺã¹Ç§¡ÅÁä´é      ∠AQP = ∠ACP      ∠AQP = 10°
∵ CD = CQ      ∆CDQ à»ç¹ ∆˹éÒ¨ÑèÇ ·ÕèÁÕ ∠C (= 80°) à»ç¹ÁØÁÂÍ´      ∠CDQ = 50° áÅР∠CQD = 50° ( ∠DQP = 30°)

(4) ¡Ó˹´¨Ø´ R à»ç¹¨Ø´µÑ´ÃÐËÇèÒ§ CD áÅÐ PQ
¾Ô¨ÒóҠ∆CQR ¨Ðä´éÇèÒ ∠CRQ = 80°      ∠CRQ = ∠QCR      ∆CQR à»ç¹ ∆˹éÒ¨ÑèÇ ·ÕèÁÕ ∠Q à»ç¹ÁØÁÂÍ´      QR = CQ      QR = DP

(5) ¾Ô¨ÒóҠ∆DQR ¨ÐàËç¹ÇèÒ ∠D = 50°, ∠Q = 30° áÅÐÁըش P º¹ÊèǹµèÍ¢ÂÒ¢ͧ QR «Öè§ DP = QR      ∠DPQ = 40° (Click à¾×èÍ´ÙÇÔ¸Õ¾ÔÊÙ¨¹ì)      ∠PDR = 60°      20° + 2x = 60°      x = 20°   Q.E.D.

´Ù⨷Âì·Ñé§ËÁ´ Click !!



Create Date : 31 ¾ÄÉÀÒ¤Á 2558
Last Update : 31 ¾ÄÉÀÒ¤Á 2558 0:00:00 ¹.
Counter : 839 Pageviews.

2 comment
Fun Geometry Problem with Solution #134
⨷Âì



¨§¾ÔÊÙ¨¹ìÇèÒ x = 20°
¾ÔÊÙ¨¹ì 1



(1) ∵ ∠BAC = ∠ABC      ∆ABC à»ç¹ ∆˹éÒ¨ÑèÇ ·ÕèÁÕ ∠C à»ç¹ÁØÁÂÍ´      AC = BC

(2) ¡Ó˹´¨Ø´ Q à˹×Í AB ·Õè·ÓãËé AQ = BQ = AB      ∆ABQ à»ç¹ ∆´éÒ¹à·èÒ      ∠BAQ = 60° ( ∠PAQ = 30°), ∠ABQ = 60° (⇔ ∠PBQ = 20°) áÅР∠AQB = 60°

♦ ÊѧࡵÇèÒ ∆BCQ  ∆ACQ ´éǤÇÒÁÊÑÁ¾Ñ¹¸ìẺ ´-´-´ (BC = AC, BQ = AQ, CQ = CQ)      ∠BQC (= ∠AQC) = (∠AQB)/2 = 30°

♦ ÊѧࡵÇèÒ ∆APQ  ∆ABP ´éǤÇÒÁÊÑÁ¾Ñ¹¸ìẺ ´-Á-´ (AP = AP, ∠PAQ = ∠BAP, AQ = AB)      ∠AQP = ∠ABP      ∠AQP = 40°      ∠BQP = 20°      ∠CQP = 10°

(3) ∵ ∠CBP = ∠CQP      ☐BPCQ ÊÒÁÒöṺã¹Ç§¡ÅÁä´é      ∠BCP = ∠BQP      x = 20°   Q.E.D.

¾ÔÊÙ¨¹ì 2 (äÁèãªé·Äɮպ·à¡ÕèÂǡѺǧ¡ÅÁ)


(1) ∵ ∠BAC = ∠ABC      ∆ABC à»ç¹ ∆˹éÒ¨ÑèÇ ·ÕèÁÕ ∠C à»ç¹ÁØÁÂÍ´      AC = BC

(2) ¡Ó˹´¨Ø´ Q à˹×Í AB ·Õè·ÓãËé AQ = BQ = AB      ∆ABQ à»ç¹ ∆´éÒ¹à·èÒ      ∠BAQ = 60° ( ∠PAQ = 30°), ∠ABQ = 60° ( ∠CBQ = 10°) áÅР∠AQB = 60°

♦ ÊѧࡵÇèÒ ∆BCQ  ∆ACQ ´éǤÇÒÁÊÑÁ¾Ñ¹¸ìẺ ´-´-´ (BC = AC, BQ = AQ, CQ = CQ)      ∠BQC (= ∠AQC) = (∠AQB)/2 = 30°

♦ ÊѧࡵÇèÒ ∆APQ  ∆ABP ´éǤÇÒÁÊÑÁ¾Ñ¹¸ìẺ ´-Á-´ (AP = AP, ∠PAQ = ∠BAP, AQ = AB)      PQ = BP      ∆BPQ à»ç¹ ∆˹éÒ¨ÑèÇ ·ÕèÁÕ ∠P à»ç¹ÁØÁÂÍ´      ∠BQP = ∠PBQ      ∠BQP = 20°      ∠CQP = 10°

(3) µèÍ QC ÍÍ¡ä»Âѧ¨Ø´ R â´Â·Õè ∠BRQ = 100°      ∠BCR = 40°
¾Ô¨ÒóҠ∆BQR ¨ÐàËç¹ÇèÒ ∠Q = 30°, ∠R = 100° áÅÐÁըش C º¹ QR ·Õè·ÓãËé ∠BCR = 40°      BC = QR (Click à¾×èÍ´ÙÇÔ¸Õ¾ÔÊÙ¨¹ìã¹â¨·Âì 1-1)

(4) ÊѧࡵÇèÒ ∆PQR  ∆BCP ´éǤÇÒÁÊÑÁ¾Ñ¹¸ìẺ ´-Á-´ (PQ = BP, ∠PQR = ∠CBP, QR = BC)      ∠PRQ = ∠BCP      ∠PRQ = x
¹Í¡¨Ò¡¹Ñé¹ Âѧä´éÇèÒ PR = CP      ∆CPR à»ç¹ ∆˹éÒ¨ÑèÇ ·ÕèÁÕ ∠P à»ç¹ÁØÁÂÍ´      ∠PCR = ∠CRP      ∠PCR = x

(5) ∵ ∠BCP + ∠PCR = ∠BCR      x + x = 40°      x = 20°   Q.E.D.

¾ÔÊÙ¨¹ì 3



(1) µèÍ BP Í͡仾º AC ·Õè¨Ø´ Q
¾Ô¨ÒóҠ∆ABQ ¨Ðä´éÇèÒ ∠AQB = 90°      BP ⊥ AC

(2) ãËé α = 10°
¾Ô¨ÒóҠ∆ABC ¨ÐàËç¹ÇèÒ Áըش P à»ç¹¨Ø´ÀÒÂã¹·Õè·ÓãËé BP ⊥ AC, ∠BAP = 30°, ∠CAP = 30° - α áÅР∠CBP = α      ∠BCP = 2α (Click à¾×èÍ´ÙÇÔ¸Õ¾ÔÊÙ¨¹ì)      x = 20°   Q.E.D.

´Ù⨷Âì·Ñé§ËÁ´ Click !!



Create Date : 28 ¾ÄÉÀÒ¤Á 2558
Last Update : 14 ÁԶعÒ¹ 2558 4:00:00 ¹.
Counter : 833 Pageviews.

0 comment
Fun Geometry Problem with Solution #133
⨷Âì



¨§¾ÔÊÙ¨¹ìÇèÒ x = 30°
¾ÔÊÙ¨¹ì



ãËé BP = L

(1) ∠APC = 120° áÅР∠BPC = 140°      ∠APB = 100°

(2) ¡Ó˹´¨Ø´ Q à»ç¹ÀÒ¾Êзé͹¢Í§¨Ø´ P ¼èÒ¹ BC      ∆BCQ  ∆BCP      BQ = BP , CQ = CP, ∠CBQ = ∠CBP = 30° áÅÐ ∠BCQ = ∠BCP = 10°
∵ BP = BQ áÅР∠PBQ = 60°      ∆BPQ à»ç¹ ∆´éÒ¹à·èÒ      PQ = BP      PQ = L

(3) ¡Ó˹´¨Ø´ R º¹ AC ·Õè·ÓãËé CR = CP      CR = CQ
¨ÐàËç¹ÇèÒ ∆CPR  ∆CPQ ´éǤÇÒÁÊÑÁ¾Ñ¹¸ìẺ ´-Á-´ (CP = CP, ∠PCR = ∠PCQ, CR = CQ)      PR = PQ      PR = L
∵ CP = CR      ∆CPR à»ç¹ ∆˹éÒ¨ÑèÇ ·ÕèÁÕ ∠C (= 20°) à»ç¹ÁØÁÂÍ´      ∠CPR = 80° áÅР∠CRP = 80°      ∠APR = 40° áÅÐ ∠ARP = 100°
∵ ∠PAR = ∠APR      ∆APR à»ç¹ ∆˹éÒ¨ÑèÇ ·ÕèÁÕ ∠R à»ç¹ÁØÁÂÍ´      AR = PR      AR = L

(4) ¡Ó˹´¨Ø´ S à˹×Í PR ·Õè·ÓãËé PS = RS = PR (= L)      ∆PRS à»ç¹ ∆´éÒ¹à·èÒ      ∠RPS = ∠PRS = 60°
∵ AR = RS      ∆ARS à»ç¹ ∆˹éÒ¨ÑèÇ ·ÕèÁÕ ∠R (= 160°) à»ç¹ÁØÁÂÍ´      ∠RAS (= ∠ASR) = 10°      ∠PAS = 30°

(5) ÊѧࡵÇèÒ ∆ABP  ∆APS ´éǤÇÒÁÊÑÁ¾Ñ¹¸ìẺ ´-Á-´ (AP = AP, ∠APB = ∠APS, BP = PS)      ∠BAP = ∠PAS      x = 30°   Q.E.D.

´Ù⨷Âì·Ñé§ËÁ´ Click !!



Create Date : 25 ¾ÄÉÀÒ¤Á 2558
Last Update : 25 ¾ÄÉÀÒ¤Á 2558 0:03:00 ¹.
Counter : 797 Pageviews.

0 comment
Fun Geometry Problem with Solution #132
⨷Âì



¨§¾ÔÊÙ¨¹ìÇèÒ x = 3α
¾ÔÊÙ¨¹ì



(1) ∠ACB = 60° + α

(2) ¡Ó˹´¨Ø´ Q à˹×Í AB ·Õè·ÓãËé AQ = BQ = AB      ∆ABQ à»ç¹ ∆´éÒ¹à·èÒ      ...
     • ∠BAQ = 60°   ⇔   ∠CAQ = 30°
     • ∠ABQ = 60°      ∠CBQ = 30° - α áÅР∠PBQ = 30°
     • ∠AQB = 60°

♦ ÊѧࡵÇèÒ ∆ACQ  ∆ABC ´éǤÇÒÁÊÑÁ¾Ñ¹¸ìẺ ´-Á-´ (AC = AC, ∠CAQ = ∠BAC, AQ = AB)      CQ = BC      ∆BCQ à»ç¹ ∆˹éÒ¨ÑèÇ ·ÕèÁÕ ∠C à»ç¹ÁØÁÂÍ´      ∠BQC = ∠CBQ      ∠BQC = 30° - α

♦ ÊѧࡵÇèÒ ∆BPQ  ∆ABP ´éǤÇÒÁÊÑÁ¾Ñ¹¸ìẺ ´-Á-´ (BP = BP, ∠PBQ = ∠ABP, BQ = AB)      PQ = AP
¹Í¡¨Ò¡¹Ñé¹ Âѧä´éÇèÒ ∠BQP = ∠BAP      ∠BQP = α      ∠AQP = 60° - α
¾Ô¨ÒóҠ☐ABQP ¨Ðä´éÇèÒ ∠APQ (ÁØÁãË­è) = 360° - (60° + 2α)      ∠APQ (ÁØÁàÅç¡) = 60° + 2α

(3) ¡Ó˹´¨Ø´ R ãµé AQ ·Õè·ÓãËé ∠QAR = 30° - α áÅР∠AQR = 30° - α ( ∠PQR = 30°)
¨ÐàËç¹ÇèÒ ∆AQR  ∆BCQ ´éǤÇÒÁÊÑÁ¾Ñ¹¸ìẺ Á-´-Á (∠QAR = ∠CBQ, AQ = BQ, ∠AQR = ∠BQC)   ⇒   QR = CQ
∵ ∠QAR = ∠AQR      ∆AQR à»ç¹ ∆˹éÒ¨ÑèÇ ·ÕèÁÕ ∠R à»ç¹ÁØÁÂÍ´      AR = QR

♦ ÊѧࡵÇèÒ ∆PQR  ∆APR ´éǤÇÒÁÊÑÁ¾Ñ¹¸ìẺ ´-´-´ (PQ = AP, PR = PR, QR = AR)      ∠QPR (= ∠APR) = (∠APQ)/2 = 30° + α

♦ ÊѧࡵÇèÒ ∆CPQ  ∆PQR ´éǤÇÒÁÊÑÁ¾Ñ¹¸ìẺ ´-Á-´ (CQ = QR, ∠CQP = ∠PQR, PQ = PQ)      ∠CPQ = ∠QPR      ∠CPQ = 30° + α

(4) ¾Ô¨ÒóҠ∆ACP ¨Ðä´éÇèÒ ∠ACP = 60° - 2α      ∠BCP = x = 3α   Q.E.D.

´Ù⨷Âì·Ñé§ËÁ´ Click !!



Create Date : 22 ¾ÄÉÀÒ¤Á 2558
Last Update : 27 ¾ÄÉÀÒ¤Á 2558 16:30:00 ¹.
Counter : 890 Pageviews.

0 comment
Fun Geometry Problem with Solution #131
⨷Âì



¨§¾ÔÊÙ¨¹ìÇèÒ x = 48°
¾ÔÊÙ¨¹ì



(1) ∠ACB = 78°

(2) µèÍ BC ÍÍ¡ä»Âѧ¨Ø´ Q â´Â·Õè ∠AQB = 72°      ∠CAQ = 6°
∠ABQ = ∠AQB      ∆ABQ à»ç¹ ∆˹éÒ¨ÑèÇ ·ÕèÁÕ ∠A à»ç¹ÁØÁÂÍ´      AB = AQ
ÊѧࡵÇèÒ ∆APQ  ∆ABP ´éǤÇÒÁÊÑÁ¾Ñ¹¸ìẺ ´-Á-´ (AP = AP, ∠PAQ = ∠BAP, AQ = AB)      PQ = BP      ∆BPQ à»ç¹ ∆˹éÒ¨ÑèÇ ·ÕèÁÕ ∠P à»ç¹ÁØÁÂÍ´      ∠BQP = ∠PBQ      ∠BQP = 36°      ∠BPQ = 108°

(3) ¡Ó˹´¨Ø´ R à»ç¹ÀÒ¾Êзé͹¢Í§¨Ø´ C ¼èÒ¹ AB      ∆ABR  ∆ABC      AR = AC, BR = BC, ∠BAR = ∠BAC = 30° áÅÐ ∠ARB = ∠ACB = 78°
∵ AC = AR áÅР∠CAR = 60°      ∆ACR à»ç¹ ∆´éÒ¹à·èÒ      AC = CR áÅР∠ACR = ∠ARC = 60° ( ∠BCR = ∠BRC = 18°)

(4) ¡Ó˹´¨Ø´ S à˹×Í AC ·Õè·ÓãËé ∠CAS = ∠ACS = 18° ( ∠ASC = 144°)
¨ÐàËç¹ÇèÒ ∆ACS  ∆BCR ´éǤÇÒÁÊÑÁ¾Ñ¹¸ìẺ Á-´-Á (∠CAS = ∠BCR, AC = CR, ∠ACS = ∠BRC)      AS = BC áÅÐ CS = BR      AS = BC = CS

(5) ∵ AS = CS áÅР∠ASC = 2(∠AQC)      ¨Ø´ S à»ç¹ circumcenter ¢Í§ ∆ACQ      ∠CSQ = 2(∠CAQ)      ∠CSQ = 12°
∵ BC = CS      ∆BCS à»ç¹ ∆˹éÒ¨ÑèÇ ·ÕèÁÕ ∠C (= 96°) à»ç¹ÁØÁÂÍ´      ∠BSC (= ∠CBS) = 42°
∵ BP = PQ áÅР∠BPQ = 2(∠BSQ)      ¨Ø´ P à»ç¹ circumcenter ¢Í§ ∆BQS      BP = PS

(6) ÊѧࡵÇèÒ ∆BCP  ∆CPS ´éǤÇÒÁÊÑÁ¾Ñ¹¸ìẺ ´-´-´ (BC = CS, BP = PS, CP = CP)      ∠BCP (= ∠PCS) = (∠BCS)/2      x = 48°   Q.E.D.

´Ù⨷Âì·Ñé§ËÁ´ Click !!



Create Date : 19 ¾ÄÉÀÒ¤Á 2558
Last Update : 19 ¾ÄÉÀÒ¤Á 2558 0:55:55 ¹.
Counter : 863 Pageviews.

0 comment
1  2  3  4  5  6  7  8  9  10  11  12  13  14  15  16  17  18  19  20  21  22  23  24  25  26  27  28  29  30  31  32  33  34  

TIYHz
Location :
¡Ãا෾Ϡ Thailand

[´Ù Profile ·Ñé§ËÁ´]
 ½Ò¡¢éͤÇÒÁËÅѧäÁ¤ì
 Rss Feed
 Smember
 ¼ÙéµÔ´µÒÁºÅçÍ¡ : 20 ¤¹ [?]



¨Ø´»ÃÐʧ¤ì·Õè·ÓºÅçÍ¡¤³ÔµÈÒʵÃì¢Öé¹ÁÒ... ¡çäÁèÁÕÍÐäÃÁÒ¡¤ÃѺ á¤èÍÂÒ¡ãËé»ÃÐà·ÈàÃÒÁÕÍÐäÃẺ¹ÕéºéÒ§
All Blog